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A study of the effects of the dynamic dipolar magnetic fields on spin mode dynamics in circular cylindrical
magnetic dots in vortex-state at zero applied fields is presented. The out-of-core and core dipolar magnetic
fields are calculated exactly for both axially symmetric and nonaxially symmetric spin modes in terms of the
nonlocal tensorial Green’s-function. The exactly calculated spin mode eigenfrequencies are compared with
those obtained using the local dipolar approximation for permalloy disks. The validity of the local dipolar
approximation is discussed for radii ranging from the nanometric to the micrometric scale and for different
thicknesses in the nanometric range. In the comparison both the case where the dynamic magnetization is
assumed uniform along the thickness and the case where a thickness dependence is present are considered. In
this framework, a simple formula giving the frequency splitting of the nonaxially symmetric modes ���m� ,n�
is obtained. The calculated splitting compares well with the measured splitting at different aspect ratios. We
also show that the general effect of the static exchange field arising from the “curling” configuration causes a
downshift of the spin mode frequencies in nanometric dots. This behavior is similar to that of the demagne-
tizing field in the saturated state.
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I. INTRODUCTION

In the last years a great deal of studies and a large extent
of experimental work have been performed to study the static
and the dynamical properties of ferromagnetic particles of
different shape and size in the “curling” configuration.1–7

This work is also due to the improvements in the fabrication
and sample preparation techniques. In particular, planar mag-
netic dots have been widely investigated and have shown a
magnetic behavior different from the one of the continuous
films because of the lateral confinement.8

A significant difficulty in the calculations is due to the
nonlocal nature of the magnetostatic interaction, because in
order to study the dynamical properties of a curling configu-
ration one should solve an integral-differential equation. Re-
cent numerical methods based on micromagnetic approaches
have been successful in the calculation of the dipolar
terms.8–10 A great advantage of these methods is represented
by the fact that confined magnetic elements of different
shapes and in different ground states may be studied. How-
ever, the micromagnetic approaches often suffer from the
limitation in the system dimensions that were studied, which
are more difficult to treat when the system is in the micro-
metric range.

Conversely, analytical approaches developed very re-
cently have solved the problem of evaluating the dipole-
dipole interactions in the vortex state at zero applied field
considering thin cylindrical dots and thus neglecting the ef-
fect of tridimensionality.2,3,7,11,12 In our previous study, in
order to partially overcome the difficulty of calculating the
dipole-dipole interaction,13 the tridimensionality effect was
studied within the local dipolar approximation also in dots of
moderate aspect ratio. The main aim of this study is, thus, the
exact calculation of the dipole-dipole interaction of both axi-
ally symmetric and nonaxially symmetric normal modes in
cylindrical ferromagnetic dots from nanometric to micromet-

ric size. The calculation is done in the vortex state at zero
applied fields taking into account the effect of tridimension-
ality. In this way, we also give an estimation of the effect of
magnetization nonuniformity along the thickness on the
mode frequencies. Furthermore, we discuss the mode fre-
quency deviation from the linear dependence from �L /R
found in dots of moderate aspect ratio, where L is the dot
thickness and R is the dot radius. Instead, it is well
known3,4,7,11,12 that the linear dependence of the frequency
from �L /R is the typical behavior of spin excitations in the
ultrathin dot limit. We do not take into account the interdot
magnetostatic energy, supposing in the calculations the ar-
rays of dots at a distance equal or larger than the dot diam-
eter. Since we deal with permalloy �Py� dots where aniso-
tropy effects are �in general� small, we also neglect any
anisotropy contribution. Moreover, we are also able to give a
quantitative derivation of the frequency splitting of the non-
axially symmetric modes obtaining a very good agreement of
the calculated m=�1 frequency splitting with available
measurements.5,7,8,14 The analytical models developed up to
now1,7,12,13 have underestimated it, while micromagnetic
simulations often tend to overestimate the experimental data
�see, e.g., Ref. 6�.

II. EQUATIONS OF MOTION AND TORQUE MOMENTS

The total magnetization is expressed as the sum of a static
and a small dynamic part, viz. M�r , t�=M0+m�r , t� with the
small dynamic part that can be written as m�r , t�
=m0r���eim�eik�ze−i�t choosing a cylindrical �� ,� ,z� refer-
ence frame; m0 is the dynamic magnetization amplitude pro-
portional to the saturation magnetization Ms, r��� is a radial
function, and � is the spin mode frequency. The ground-state
static magnetization in the out-of-core �OC� region takes the
form M0= �0,M�

OC,0�, with �M0�=Ms and its deviation from
equilibrium may be written as mOC= �m� ,0 ,mz�. Indeed, the
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deviation from the ground state of the azimuthal component
of m along the unit vector, �̂ and m�, is much smaller10 with
respect to m� and mz. The amplitudes mo� and m0z are com-
plex. Moreover, in the OC region �Mz�� �M�

OC� so that
�M�

OC��Ms. In the core �C� region, the ground-state static
magnetization is M0= �0,M�

C,Mz�, with M�
C=M��

� sin � and
Mz=M��

� cos � obtained by means of R−1���=R�−��. R��� is
the rotation matrix defined by the Euler angles �0,� ,0� with
respect to two Cartesian frames, one fixed �x,y,z� and the
other, �x� ,y� ,z��, rotated by �=	 /2−� about the x axis with
x=x� and � is the polar angle �Ref. 13�. M��

� corresponds
thus to the M�

OC component in the fixed reference frame so
that M��

� may be substituted by M�
OC.

Due to the rotation of the precession plane in the C region
�0
�
a� with a, the C radius a m�

C component arises so
that the dynamic magnetization may be expressed as mC

= �m� ,m�
C,mz

C� with m�
C�r , t�=−mz�

� �r , t�cos � and mz
C�r , t�

=mz�
� �r , t�sin �. The component mz�

� is the z component of the
dynamic magnetization with respect to the local rotated ref-
erence frame �x� ,y� ,z�� in the C region and corresponds to
the mz component of the fixed �x ,y ,z� reference frame so
that mz�

� may be substituted by mz. The m�
C and mz

C compo-
nents are obtained by means of R�−�� applied to mz�

� .
Omitting the space and time dependences, we write down

the linearized equation of motion obtained neglecting the
second-order dynamic terms13

−
1

�

�m

�t
= mOC � Heff

OC + M0 � heff
OC + mC � Heff

C + M0 � heff
C ,

�1�

where �0 is the gyromagnetic ratio. As we are not inter-
ested in time decaying of spin modes, we neglect the damp-
ing term. The static effective field Heff=Heff

OC+Heff
C is ex-

pressed by means of its OC and C static fields, Heff
OC and Heff

C ,
respectively; heff

OC and heff
C are the corresponding dynamic

fields. On the second member of Eq. �1� the first-order torque
moments appear, viz. �= ��� ,�� ,�z�, respectively.

In order to give a realistic description of the spin dynam-
ics taking into account both C and OC effects separately, we
write the total dynamic magnetization by using the Heaviside
step function u�x�. The total dynamic magnetization may
thus be expressed by means of the relation m=u��−a�mOC
+u�a−��mC with u��−a�=1�0� for a��
R�0
��a� and
u�a−��=1�0� for 0
��a�a��
R�, where a�R is the C
radius. For �=a, that is at the boundary between the C and
the OC regions, we use the convention according to which
the discontinuity is eliminated, viz. u��−a�=u�a−��=1 /2,
and we have also mOC=mC=m. In order to explain the
above relation we consider the following two special cases:
In the absence of a C region �a=0� the static magnetization
is in the dot plane so that m=mOC. On the other hand, as-
suming that the C region extends to the whole dot �a=R�, we
get m=mC. Hence, this allows us to write m in terms of a
combination of C and OC contributions for the general case
where a C region of finite radius a�R is present. The cor-

responding temporal evolution thus reads, �m
�t =u��−a�

�mOC

�t

+u�a−��
�mC

�t .
Equation �1� may in turn be expressed in terms of

components as − 1
�

�m�

�t =��; − 1
� �u�a−��

�m�
C

�t �=��; and

− 1
� �u��−a�

�mz
OC

�t +u�a−��
�mz

C

�t �=�z. At this point one could
solve the eigensystem problem by taking into account the
above equations. Nevertheless, other approximations allow
us to further simplify the solution. In particular, the �� com-
ponent may be neglected, because its OC contribution is sub-
stantially zero whereas its C contribution is smaller with re-
spect to the other torque contributions. We may thus set
�m�

C

�t =0. Furthermore, because of these approximations
�mz

�t

may be replaced by
�mz

OC

�t . Hence, it is also possible to write
�m
�t �

�mOC

�t . Equation �1� in the approximated form reads,

−
1

�

�mOC

�t
= �̃ , �2�

where the torque moments �̃= ��� ,�z�. Equation �2� gives a
simplified description of spin dynamics because its temporal
evolution is expressed in terms of the OC components m�

and mz only, but at the same time it also includes the contri-
bution of the C region in the torque moments. Notice that
one may also derive Eq. �2� by using the � representation
��=a /R is a weighting factor� described in Ref. 13.

In the calculation of the torque moments we suppose
without loss of generality that the vortex chirality is C= +1
�i.e., counterclockwise rotation of the curling magnetization�
and that the vortex polarity is P= +1 corresponding to up-
ward orientation of the magnetization in the dot center with
respect to the plane of the disk.

The effective static field reads Heff�r�=Hexch�r�
+Hdem

C �r�. The first term on the second member is the static
exchange field, while the latter is the C demagnetizing field.
The perpendicular static demagnetizing field takes the form,
Hdem

C �r�= �0,0 ,Hdem
C �r��, because the only “surface magnetic

charges” are those generated by the static magnetization
pointing outward or inward with respect to the dot surface in
the C region. On the other hand, the isotropic static exchange
field is given by Hexch�r�= �0,Hexch

� �r� ,Hexch
z �r��. The azi-

muthal dependence in r is only implicit in the cylindrical
frame and the z component is different from zero in the C
region only.

The dynamic effective field is heff�r , t�=hd
OC�r , t�

+hd
C�r , t�+hexch�r , t�, where the first term represents the OC

dynamic dipolar magnetic field, the second term is the C
dynamic dipolar field, and the latter is the isotropic dynamic-
exchange field. These dynamic fields are spatially nonuni-
form. The dynamic dipolar magnetic field due to the “volume
magnetic charges” is also called dynamic demagnetizing
field and it is of magnetostatic origin. On the basis of the
previous approximations on the dynamic magnetization also
the isotropic dynamic-exchange field in the whole dot may
thus be expressed in terms of the OC contribution only of the
dynamic magnetization, i.e., hexch�r , t����2mOC�r , t� with
�=2A /Ms

2 the exchange constant and A being the exchange
stiffness constant. Notice that this representation also takes
indirectly into account the exchange contribution from the C
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region and is in agreement with the fact that the exchange
contribution is local.

Omitting the space and time dependences

�̃ = �Ms sin ��hdz
OC + hdz

C � − Ms cos ��hd�
OC + hd�

C + hexch
� �

− Hexch
� mz sin � − �Hexch

z + Hdem
C �mz cos �

+ �Ms sin ��2mz��̂ − �Ms sin ��hd�
OC + hd�

C � − Hexch
� m�

+ �Ms sin ��2m��ẑ .

Notice that the � component of the dynamic-exchange field
represented in a compact form as ��2m� is given by hexch

�

=���2m�−1 /�2m��. However, the term proportional to 1 /�2,
if averaged over the OC area, turns out to be smaller than the
first term and may be neglected. It is also hexch

�

=2� /�2�m� /��. We have neglected ��=Ms cos ��hd�
OC

+hd�
C �− �Hexch

z +Hdem
C �m�, which is very small with respect to

the other contributions. The expression of �̃ may be cast in a
more simple form, because for dots exhibiting a vortex-state
configuration, the C surface area SC=	a2 is much smaller
than the dot endface surface area S=	R2. We get approxi-
mately Ms sin ��Ms and Ms cos ��0; the torque moment
takes, thus, the simple form

�̃ � �Ms�hdz
OC + hdz

C � − Hexch
� mz sin � − �Hexch

z + Hdem
C �mz cos �

+ �Ms�
2mz��̂ − �Ms�hd�

OC + hd�
C � − Hexch

� m� + �Ms�
2m��ẑ .

The torque term −Hexch
� mz sin � is in turn given by two

contributions: in one appears the C contribution of Hexch
�

multiplied by mz sin � in the C region and in the other the
product between its OC contribution and the z component of
the dynamic magnetization in the OC region given by mz.
Nevertheless, because of the negligible effect on the frequen-
cies due to this assigning, in the derivation of the spectrum
of spin modes, we have considered the single torque term
−Hexch

� mz sin � leaving the � dependence in the dynamic
magnetization. The angular parts of the C dynamic magneti-
zation components will be averaged over the C area only to
obtain the spectrum of spin modes �see Sec. IV�. In this way
from each average one obtains a coefficient, which gives the
weight of the spin mode amplitude in the whole dot. Finally,
the torque term −�Hexch

z +Hdem
C �mz cos � is smaller with re-

spect to the other terms appearing in ��, but we do not in
principle neglect it. Indeed, by averaging Hexch

z +Hdem
C over

the dot endface area separately from the angular part of the
dynamic magnetization, the term −�Hexch

z +Hdem
C �mz cos � of

�� results overestimated, but in this way the neglected term
−�Hexch

z +Hdem
C �m� of �� is partially taken into account.

We write down the linearized equations of motion13

− Mshd� + Hexch
� m� − �Ms�

2m� = i�mz, �3a�

− Mshdz + Hexch
� mz sin � + �Hexch

z + Hdem
C �mz cos �

− �Ms�
2mz = − i�m�. �3b�

Here �=� /�, hd�=hd�
OC+hd�

C , and hdz=hdz
OC+hdz

C .
One can consider different magnetization distributions to

describe the dynamical properties in the vortex state. In par-
ticular, Usov and Peschany,15 differently from other studies
�see, e.g., Ref. 16�, found a static magnetization distribution

continuous for �=a by means of a variational method. Fur-
thermore, even though the results of the variational approach
are compared with micromagnetic results in an elongated
cylindrical particle of 0.50
�
10, with the aspect ratio �
=L/R, the derived magnetization distribution is more general
and can be applied also to dots with ��0.50 exhibiting a
vortex-state configuration. Therefore, we choose from now
on the Usov distribution given by f���=2a� / �a2+�2� for 0

�
a and f���=1 for a
�
R, with f���=sin ����.

Interestingly, one can derive quantitatively the
equations of motion averaging the static magnetization
over the dot endface area by means of the Usov
distribution, viz. Ms�sin ����	����=Ms�1+�2�3−	���Ms
and Ms�cos ����	����=Ms��2�2 ln 2−1���0, respectively.
�. . .	���� indicates the average by means of ���� over the dot
endface area. Hence, �̃ in view of the above averages reduces
again to

�̃ � �Ms�hdz
OC + hdz

C � − Hexch
� mz sin � − �Hexch

cz + Hdem
C �mz cos �

+ �Ms�
2mz��̂ − �Ms�hd�

OC + hd�
C � − Hexch

� m� + �Ms�
2m��ẑ .

Notice that each mode has a nonvanishing hd�
C component,

while only nonaxially symmetric modes have a hd�
OC compo-

nent. However, the corresponding torque contributions are
negligible. Again the linearized equations of motion are
found.

The main contribution to the static effective field is given
by Hexch�r�=��2�0,M��r� ,Mz�r��. Under the assumption
that the static magnetization is uniform along z �Ref. 13�,
Hexch�r�=Hexch���, where the � dependence is implicit
in the cylindrical reference frame. The � component
represented in a compact form as ��2M���� is given
by ���2M����−1 /�2M�����. We get by taking into
account the Usov distribution Hexch

� ���=��MsI���, with
I���= �−sin �� d�

d� �2+cos � d2�

d�2 + 1
�cos � d�

d� − 1
�2 sin �� where both

chiralities C=�1 of the curling in-plane magnetization are
taken into account �C=−1 indicates the in-plane component
of the static magnetization rotates clockwise�. Moreover,
each spin mode should be affected by a different static ex-
change field such as for the demagnetizing field in saturated
dots.17 Nevertheless, we have found that each spin mode
�with the only exception of the gyrotropic mode� is substan-
tially affected by a static exchange field with the magnitude
of the static exchange field averaged over the dot endface
area S=	R2. Hence Hexch

� =�
�Ms

S 
Sd2�I���. Substituting
����=arcsin�2a� / �a2+�2�� for 0
�
a, we get
IC���=−�16a3� / �a2+�2�3�. Instead for a
�
R the quantity
IOC���=−4a2 / �a2+�2�2−1 /�2 is obtained. The result of the
average is, thus,

Hexch
� = � 2�Ms

1

R2�ln
1

�
−

1 − �1/�2�
1 + �1/�2�

+
	

2
� . �4�

One notes that the C term �the last term on the second mem-
ber� differs slightly from the approximated one, derived in
Ref. 13, because the factor 	 appears in place of three. Since
the quantity inside square brackets is positive, the torque
term arising from Hexch

� causes a decrease in the spin mode
energy in dots of radius in the nanometric range where the
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exchange effects are not negligible. This effect is similar to
that of the demagnetizing field in saturated systems. The first
term on the second member showing a logaritmic depen-
dence is a general result for vortex-state systems with cylin-
drical symmetry because it does not depend on the chosen
magnetization distribution. Taking into account that Hexch

z

=�2�Ms
1

R2 �Ref. 13� where both polarities P=�1 are taken
into account �P=−1 corresponds to downward orientation in
the dot center of the magnetization with respect to the plane
of the disk�, one finds that in the whole dot the static ex-
change field is antiparallel to M0. This behavior is very simi-
lar to that of the first-order demagnetizing field in perpen-
dicularly saturated nonellipsoidal systems, which are
antiparallel to the perpendicular static magnetization.

Another contribution to the C effective field is given by
the perpendicular demagnetizing field Hdem

C �r�
= �0,0 ,Hdem

C �r�� generated by the surface magnetic charges
in the C region. It is well known that the magnetostatic en-
ergy in the ultrathin dot limit becomes local and one can
assume that the C region reduces to a point. However, in our
model where dots of finite aspect ratio are studied the C
region has a finite radius a. The average over z and z� yields
to Hdem

C ���. We have found that the contribution of Hdem
C ���

on spin mode frequencies calculated by using the Usov dis-
tribution and averaged over S=	R2 turns out to be for R
=100 nm on average about one orders of magnitude smaller
than the C part of the exchange field and it may thus be
neglected.13

III. DIPOLAR MAGNETIC FIELDS

We restrict ourselves to the analysis of vortex spin modes
in both the dipole-exchange and exchange regions that ex-
hibit a surface character.18 As shown by micromagnetic cal-
culations, with increasing the dot thickness also modes
showing nodes along z analogously to exchange perpendicu-
lar standing waves in continuous films may be present.9 The
trial solution taken for a single normal mode1,7 in dots of
nanometric and submicrometric size takes the general form
mi�� ,� ,z�� �J�m��k��−�mY �m��k���eim�eik�z, with i=� ,z,
J�m��k��(Y �m��k��) the Bessel function of the first �second�
kind, �m the scattering amplitude and m=0,�1,�2, . . . as
the azimuthal number. On the other hand, as shown in Ref.
11 for cylindrical dots with radii in the micrometric range
where exchange effects may be considered negligible, it is
realistic to assume as trial solution in response to a perpen-
dicular magnetic tipping field m��J1�k��eim�, with m
=0,1 ,2 , . . . for the whole set of modes. This choice has also
been carried out by Guslienko et al.19 studying the spin dy-
namics in thin cylindrical dots. Therefore, it is plausible to
assume as trial eigenfunction of the m=�1 and n=0 doublet
m��� ,� ,z�� �J1�k��−��10Y1�k���e��eik�z for the whole
range of radii investigated.

In the vortex state the surface magnetic charges on the dot
edges mostly contribute to the pinning of the in-plane radial
component m� only. The mz component should be considered
more realistically unpinned if its source of pinning is related
to the surface magnetic charges on the dot lateral surface
only. However, another important source of pinning of

purely dipolar nature that can affect both the m� and the mz
components in the vortex state arises from the volume mag-
netic charges related to the nonuniform dynamic dipolar field
close to the dot edges.19,20 Thus it is realistic to write the
more general radial boundary condition in terms of compo-
nents in the form: ��

�mi���
�� + pimi�����=R=0, where the depen-

dence of the magnetization from the indexes m and n has
been omitted and i=� ,z. In particular, p�=�+g��� with �
= Im�RL /2	l0

2�ln�4R /L�, whereas pz=g���. Here l0
= �A /2	Ms

2�1/2 is the reduced exchange length, Im=2 for m
=0, Im=1 for �m��0, and g��� is a function of the aspect
ratio �=L /R. The first term of p�, �, is due to surface mag-
netic charges and represents the largest contribution, while
the second term, g���, is caused by volume magnetic charges
close to the edges. The term g��� not given explicitly in-
creases with decreasing � such as for stripes in the saturated
state.20 From the radial boundary condition one finds the
quantized in-plane wave number �mn, where n=0,1 ,2 , . . .
denotes the number of radial nodes. It is important to note
that the above radial boundary condition is more strictly
valid for thin dots because it was obtained in the limit of �
�1 �Refs. 1 and 20� and the calculated radial profiles of spin
modes result in general pinned on the dot boundary. Never-
theless, from a more general point of view the m� component
must be strongly pinned also for dots of moderate aspect
ratio to avoid the divergence of the magnetostatic energy on
the boundary.10 Instead, the mz component should be consid-
ered for large � rather unpinned. Since the frequencies of
spin modes with the only exception of the m=0 and n=0
mode at intermediate and large � �see Sec. V for a discus-
sion� are substantially not affected by this different degree of
pinning of the mz component, we have assumed plausible for
the numerical calculation the �mn determined for the m� com-
ponent also for the mz component for each � studied. More-
over, in the numerical calculations on Py dots we have not
accounted for g���, because at a given ��1 is much smaller
than �.

A. Dipolar magnetic fields with uniform magnetization along
the thickness

In the first place we suppose that the profile of the
dynamic magnetization is uniform along z, i.e., we take
m�r�=m ���. This means that we examine thin dots,
i.e., L�R. Therefore, it is also hd�r�=hd��� with
hd���=hd

OC���+hd
C���. As a result of this average, the

G�z and the Gz� components of the Green’s-function

tensor Ĝ�� ,���, with ����=� ,�, vanish. The variable
dynamic dipolar magnetic fields in their general form

are defined as hd
OC���=
SOC

d2��Ĝ�� ,���mOC���� andhd
C���

=
SC
d2��ĜC�� ,���mC���� for the OC and C region, respec-

tively. In particular ĜC�� ,���= R̂−1Ĝ��� ,���R̂ with R̂= R̂���
��=	 /2−�� the rotation matrix defined by the Euler angles

�0,� ,0�. Ĝ� is the tensorial Green’s-function with respect to

the rotated reference frame system, while ĜC is the rotated
Green’s-function tensor in the C region expressed with re-
spect to the fixed OC reference frame �the � dependence is
omitted�. In explicit form,
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ĜC��,��� =  G��� G��� sin � G��� cos �

G��� sin � G��� sin2 � + Gzz� cos2 � �G��� − Gzz� �sin � cos �

G��� cos � �G��� − Gzz� �sin � cos � G��� cos2 � + Gzz� sin2 �
� , �5�

omitting the dependence from � and �� in the second mem-
ber. To calculate the spin mode spectrum, it is useful to
give a simple definition of hd

C���, namely, hd
C���

=
SC
d2���ĜC�� ,���	�����mC����	����, where here �¯	���� de-

notes the average by means of ���� over the surface C area
only. The numerical results derived by means of this defini-
tion are very close to those obtained with the general defini-
tion.

First, the integral over the azimuthal coordinate �� ap-
pearing in hd

OC��� and hd
C��� by using the series expansion in

Bessel functions of the Green’s-function tensor components
reads,

�
0

2	

e−il��eim�� = 2	�lm, �6�

where l is the summand index of the Bessel series of the
tensor Green’s-function components. Due to the very com-
plicated form of the solution close to the C region one can
approximate the dynamic magnetization in the C region mul-
tiplying the solution found far from the vortex C region by
sin �. The dynamic dipolar magnetic fields given in the fol-
lowing are more strictly valid for radii ranging from the na-
nometric to the submicrometric range because they corre-
spond to the most plausible choice of the trial radial
eigenfunctions for dots of this size.

1. Axially symmetric modes

The integral of Eq. �6� does not vanish for l=m so that for
the axially symmetric modes �m=0 and n� only the l=0 sum-
mand in the tensorial Green’s-function series expansion con-
tributes. Correspondingly, the components of hd

OC��� contrib-
uting to the linearized equations of motion may be expressed
explicitly as

hdi
OC0n��� = − 4	m0i

0n��
a

R

d�����J0��0n���

+ �0nY0��0n����Iii
0��,���� , �7�

with i=� ,z. Instead, taking into account that the integral over
�� leads to a vanishing contribution of the G��� , G��� , and
G��� components to the nonlocal C dynamic dipolar magnetic
field, we get

hdi
C0n��� = − 4	m0i

0n�A�
0

a

d�����J0��0n���

+ �0nY0��0n����BIii
0��,���� , �8�

with i=� ,z; A=1 for i=� and A=b+e for i=z; B
=sin ����� for i=� and B=1 for i=z; and b= �4 ln 2−2��4
−	� and e= �2	−6��2 ln 2−1�. In particular, I��

0 �� ,���
=
0

�dkkf�kL�J1�k��J1�k��� and Izz
0 �� ,���= 1

��
����−��

−
0
�dkkf�kL�J0�k��J0�k��� with f�kL�=1− 1−e−kL

kL . The con-
stants �4 ln 2−2� and �2	−6� are the result of the average
over the C surface area by means of the Usov distribution of
the angular parts sin2 � and sin � cos � appearing in the ro-
tated Green’s-function tensor elements, respectively. Instead,
the constants �4−	� and �2 ln 2−1� are the result of the
same average of the angular parts sin � and cos � of the
rotated dynamic magnetization, respectively. The term
weighted by e is much smaller than the one weighted by b
and has been thus neglected in the numerical calculations.
I��

0 �� ,��� and Izz
0 �� ,��� are calculated analytically in the Ap-

pendix �cf. Eqs. �A1�–�A4��. Instead, we have numerically
carried out the integrals over ��.

In the limit of thin dots �R�L� it is reasonable to apply
the thin-film approximation. Strictly speaking the expres-
sions of the approximated fields given in the following are
derived by taking into account the radial dependence of the
first term only, viz. J0��0n��. As a matter of fact, the pertur-
bative term given by �0nY0��0n��� is much smaller and does
not affect the calculations. Substituting Izz

0 �� ,��� and taking
into account that in the thin-film limit R�L, the z compo-
nents of the dynamic dipolar field �cf. Eq. �8�� may be ap-
proximated by

hdz
OC0n��� � − 4	m0z

0n��
a

�

d��J0��0n������� − ��

− �
0

�

dkkf�kL�J0�k���
a

�

d����J0�k���J0��0n����
and

hdz
C0n��� � − 4	m0z

0nb��
0

a

d��J0��0n������� − ��

− �
0

�

dkkf�kL�J0�k���
0

a

d����J0�k���J0��0n����
for the OC and C regions, respectively. In particular,

a
�d��J0��0n�������−��=u��−a�J0��0n��; u��−a� is 1 for

a��
R and 0 for 0
��a; hence, as expected, the
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hdz
OC0n��� magnitude turns out to be zero in the C region.

Taking into account the � representation used for the dy-
namic magnetization with �=a /R the C weighting factor,13

we may perform the substitution of u��−a�J0��0n�� with
�1−��J0��0n��, where �1−�� is a weighting factor for the
OC region. The effect of this substitution is to reduce the OC
magnitude of hdz

OC0n��� redistributing it into the C region.
Moreover, by using the �-function integral relation, we get

�
a

�

d����J0�k���J0��0n��� = �
0

�

d����J0�k���J0��0n���

− �
0

a

d����J0�k���J0��0n���

=
1

�on
��k − �0n� − �F�k,�0n�

where

F�k,�0n�= �kRJ0��0na�J1�ka�−�0nRJ0�ka�J1��0na��/�k2 −�0n
2 �

is an oscillating function. The expression on the second
member has in turn to be integrated over k. The integration
of the first term is trivial because 
0

�dkkf�kL� 1
�0n
��k

−�0n�J0�k��= f���0n�J0��0n�� with �0n=�0nR, while the in-
tegral �
0

�dkkf�kL�F�k ,�0n�J0�k�� may be carried out nu-
merically. We have numerically calculated the corresponding
approximated matrix elements evaluating the corresponding
integrals under the reasonable assumption that �0n�k �see
the Appendix �cf. Eq. �A15�� for their general definition�. On
the basis of this calculation we have found that the result of
the integration over k may be approximately substituted by
the simple expression �f���0n�J0��0n��. In a similar way by
using the, u�a−��, Heaviside step function, we get the C
component. These approximations allow us to write down
hdz

OC0n��� and hdz
C0n��� in the following final form:

hdz
X0n��� � − 4	m0z

0nb�X�1 − f���0n��

��J0��0n�� + �0nY0��0n��� , �9�

where X=OC,C, �X=1−� for X=OC, and �X=� for X=C.
Here b=1 for X=OC and b= �4 ln 2−2��4−	� for X=C. We
have also added the term �0nY0��0n�� because of the very
small value of �0n. This substitution is plausible because in
addition to a good estimate of the exactly calculated matrix
elements dzz

OC0n and dzz
C0n evaluated here in the thin dot limit it

also gives an assigning of the dynamic dipolar energy den-
sity between the C and the OC regions very close to that
obtained by means of the calculation of dzz

OC0n and dzz
C0n.

One of the results of the thin-film approximation is repre-
sented by the quantization of the inverse dynamical suscep-
tibility, i.e., f���0n�. We use this result to make further
strong approximations moving out of the integral over k the
quantity f���0n� whose values are in the range between zero
and one. This operation becomes more valid for dots of mod-
erate � and for large �0n, where f���0n�→1. Therefore,
from Eqs. �7� and �8� for i=� taking into account the expres-
sion of I��

0 �� ,���, we get

hd�
OC0n��� � − 4	m0�

0nf���0n���
a

R

d�����J0��0n���

+ �0nY0��0n�����
0

�

dkkJ1�k��J1�k����
and

hd�
C0n��� � − 4	m0�

0nf���0n���
0

a

d�����J0��0n���

+ �0nY0��0n����sin ������
0

�

dkkJ1�k��J1�k���� ,

respectively. By using the property 
0
�dkkJ1�k��J1�k���

= 1
��
����−��, we get, after an integration over ��,

hd�
OC0n����−4	m0�

0nu��−a�f���0n�J0��0n�� and hd�
C0n���

�−4	m0�
0nu�a−��f���0n�J0��0n��sin ����.

The above equations are the expression of the local dipo-
lar approximation for the radial components. Making a sub-
stitution similar to the one made for the z component they
may be casted in the following final forms:

hd�
X0n��� � − 4	m0�

0n�Xf���0n��J0��0n�� + �0nY0��0n��� ,

�10�

where the same final approximation has been performed such
as for the case of the z component. The meaning of the
symbols is the same as in Eq. �9�. In Eq. �10� for X=C, we
have considered for the sake of simplicity the eigenfunction
far from the vortex core ���a� setting sin �=1. Notice that
the approximated corresponding matrix elements resulting
from hd�

OC0n��� and hd�
C0n��� in Eq. �10� are �1−��f���0n� and

�f���0n�, respectively, giving approximately the ratio be-
tween the C and OC dipolar energy density of the exact
calculation. Indeed, the strong approximation consisting on
the quantization of the inverse dynamical susceptibility is
partially attenuated by substituting in the expression of the
dipolar field radial C and OC components u��−a� and u�a
−�� with �1−�� and �, respectively.

2. Nonaxially symmetric modes

According to the integral of Eq. �6� that gives a nonvan-
ishing contribution for l=m, the components of the OC dy-
namic dipolar magnetic field of nonaxially symmetric modes
��m��0,n�, which contribute to the linearized equations of
motion are given by

hdi
OCmn��,�� = − 4	m0i

mn��
a

R

d�����J�m���mn���

− �mnY �m���mn����Iii
m��,����eim�, �11�

with i=� ,z. Instead, we write the C components in the form:

hd�
Cmn��,�� = − 4	m0�

mnCeim�, �12a�
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hdz
Cmn��,�� = − 4	�m0�

mnẽD − m0z
mn��e − f̃�E − �e + b�F��eim�,

�12b�

where ẽ= �2 ln 2−1� and f̃ = �3−4 ln 2��4−	�. The constant
�3−4 ln 2� is the result of the average over the C surface by
means of the Usov distribution of the angular part cos2 �.
Here

C = �
�

a

d�����J�m���mn��� − �mnY �m���mn����

�sin �����I��
m ��,��� ,

D = �
�

a

��d���J�m���mn��� − �mnY �m���mn����I��
m ��,��� ,

E = �
�

a

��d���J�m���mn��� − �mnY �m���mn����I��
m ��,��� ,

F = �
�

a

��d���J�m���mn��� − �mnY �m���mn����Izz
m��,��� .

In particular,

I��
m ��,��� = �

0

�

dkkf�kL�Jm� �k��Jm� �k��� ,

I��
m ��,��� = i�

0

�

dkkf�kL� m
k�Jm�k��Jm� �k��� ,

I��
m ��,��� = �

0

�

dkkf�kL� m
k�Jm�k�� m

k��
Jm�k��� ,

and

Izz
m��,��� = 1

��
���� − �� − �

0

�

dkkf�kL�Jm�k��Jm�k��� ,

respectively. It is also I��
m �� ,���= I��

−m�� ,���, I��
m �� ,���

= �I��
−m�� ,�����, I��

m �� ,���= I��
−m�� ,���, and Izz

m�� ,���
= Izz

−m�� ,���, with � as an infinitesimal quantity which permits
to exclude the Y �m� singularity at �=0. In the following nu-
merical calculations we take into account in the second
member of Eq. �12b� only the term weighted by the prefactor
b that is proportional to Izz

m�� ,��� because it is much larger
than the other terms. The integrals I��

m �� ,��� and Izz
m�� ,��� for

m=�1,�2 . . . are calculated analytically in the Appendix
A �cf. Eqs. �A5�–�A14��.

Again, we apply the local dipolar approximation to the
hdz

OCmn and hdz
Cmn given in Eq. �11� for i=z and Eq. �12b� in the

limit of thin dots �R�L� assumimg �mn�1. We get

hdz
OCmn��,�� � − 4	m0z

mn��
a

�

d��Jm��mn������� − ��

− �
0

�

dkkf�kL�Jm�k���
a

�

d����Jm�k���

�Jm��mn����eim�

and for the C contribution

hdz
Cmn��,�� � − 4	m0z

mnb��
0

a

d��Jm��mn������� − ��

− �
0

�

dkkf�kL�Jm�k���
0

a

d����Jm�k���

�Jm��mn����eim�.

Analogously to the case of axially symmetric modes
we use the �-function integral relation

�
0

�

d����Jm�k���Jm��mn��� = 1
�mn
��k − �mn�

to calculate

�
a

�

d����Jm�k���Jm��mn��� = �
0

�

d����Jm�k���Jm��mn���

− �
0

a

d����Jm�k���Jm��mn���

= 1
�mn
��k − �mn� − �F�k,�mn�

where F�k ,�mn�= ��mnRJm−1��mna�Jm�ka�
−kRJm−1�ka�Jm��mna�� / �k2−�mn

2 � is an oscillating function.
Carrying on the same steps made for the axially symmetric
modes for the calculation of the corresponding dipolar ma-
trix elements in the limit for �mn�k, the integral over k of
the oscillating function, namely,

��
0

�

dk kf�kL�F�k,�mn�Jm�k��

can be approximately substituted by �f���mn�Jm��mn�� with
�mn=�mnR. Thus, we get in the general form;

hdz
Xmn��,�� � − 4	m0z

mnb�X�1 − f���mn���J�m���mn��

− �mnY �m���mn���eim�, �13�

providing that the perturbative term �mnY �m���mn�� is in-
cluded. The meaning of the symbols is the same as in Eq.
�9�. Consequently, taking into account the f���mn� quantiza-
tion, the OC and C � components may be written as

hd�
OCmn��,�� � − 4	m0�

mnf���mn�TOCeim�, �14a�

hd�
Cmn��,�� � − 4	m0�

mnf���mn�TCeim�, �14b�

where
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TOC = �
a

R

��d���J�m���mn��� − �mnY �m���mn����

� �
0

�

dk kJm� �k��Jm� �k���

and

TC = �
�

a

��d���J�m���mn��� − �mnY �m���mn����

� sin ������
0

�

dk kJm� �k��Jm� �k��� .

One sees that the radial components given in Eqs. �14a� and
�14b� have yet a nonlocal dependence from the correspond-
ing radial components of the dynamic magnetization. The
approximated Eqs. �13�, �14a�, and �14b� are valid for �m�
�0 and n=0 modes with the exception of the gyrotropic
mode whose amplitude is mainly represented by the Bessel
function of the second kind. From the exact calculation of
the dipolar diagonal matrix elements, one should consider
more generally �= �a /R�t with t1 for modes with �m��1
and n. Finally, the local dipolar approximation progressively
fails with increasing � because the static magnetization close
to the dot edges is no longer on the dot plane perpendicular
to the cylinder axis.

Expressions similar to those given above for the dipolar
magnetic fields of axially and nonaxially symmetric modes
in dots of radii in the micrometric range can be found. One
should take into account that for dots of this size the more
plausible trial radial eigenfunctions assume the form
�J1��n�eim�, with m=0,�1,�2, . . . �Ref. 11�. Straightfor-
wardly, one could also find the expressions of the corre-
sponding dipolar fields within the local dipolar approxima-
tion.

B. Dipolar magnetic fields with nonuniform magnetization
along the thickness

It is well known far back by use of micromagnetic calcu-
lations that the static magnetization is nonuniform along the
dot thickness, especially in dots of moderate aspect ratio
�see, e.g., Ref. 21 and references cited therein�. This nonuni-
formity is present also in the OC region and may affect the
mode profiles, which are also nonuniform along z �as also
shown by our micromagnetic calculations on cylindrical
dots�. It is reasonable to assume a surface character of the
spin modes studied here including the �m��0 and n modes
because of their radial character despite their backwardlike
“volume” nature related to the azimuthal wave number k�
=�1,�2,. . . �Refs. 7, 8, and 13�. In order to find the z
component of the wave number for each spin mode and to
simply calculate it we use, in analogy to the case of the
continuous film,18 the differential equation of the magneto-
static potential �. This equation is derived in the absence of
an external field and neglecting the exchange effects from
the linearized equations of motion and from the Maxwell
equations in the magnetostatic limit. � gives rise to the dy-

namic dipolar magnetic field h. Substituting into the poten-
tial differential equation the trial solution � in cylindrical
coordinates yields ��

mn�� i�mn, where ��
mn is the perpen-

dicular quantized wave number, which modes have a surface
character. Without loss of generality we assume for the
whole set of modes ��

mn=� i�mn. We do not take into ac-
count the quantization of the perpendicular wave vector re-
sulting more important in the C region. This further quanti-
zation effect would be obtained applying the “mixed”
exchange boundary condition and would be related to pin-
ning effects on the dot endfaces. Also the twisting configu-
ration of the static magnetization along z, which becomes
more important with increasing L in nanometric dots, can
contribute to the pinning of the mode profiles close to the
upper and lower dot endfaces. The twisting effect could be
included in the “mixed” exchange boundary condition along
z. It would give, under the reasonable assumption that the
pinning effects affect equally the modes, a quantization of
the same order of magnitude for each mode of the spectrum
at fixed thickness and a surface character to the spin excita-
tions investigated in this study. However, it would be, in
principle, more difficult to treat quantitatively. We thus con-
sider plausible for the calculations the simple quantized re-
lation with the equality, i.e., ��

mn=� i�mn, which is a purely
dipolar result and gives, in principle, a different ��

mn for each
mode.

The general expression of the OC dynamic dipolar mag-

netic field reads hd
OC�r�=
VOC

d3r�Ĝ�r ,r��m�r��, whereas the

C contribution is hd
C�r�=
VC

d3r�ĜC�r ,r��mC�r��. Analo-
gously to the case of uniform magnetization along z, one
may express the C contribution in the form hd

C�r�
=
VC

d3r��ĜC�r ,r��	�����mC�r��	����. VOC and VC are
the OC and C volumes, respectively.13 The meaning
of the other symbols is the same as in the case of uniform
magnetization. In order to overcome the restriction due to the
local dipolar approximation13 in the present approach one
distinguishes between the k dependence resulting from the
Fourier momentum representation of the magnetostatic ten-
sorial Green’s-function and the �mn dependence of the spin
modes. Choosing the reference frame origin in the half plane
between the two endfaces of the dot, we thus evaluate
the quantity 
−L/2

L/2 dz
−L/2
L/2 dz�e−�mn�L/2+z��e−k�z−z��e−�mn�L/2+z� /


−L/2
L/2 dze−2�mn�L/2+z�=2 /kf�kL ,��mn�, where

f�kL,��mn� =
kL

k2L2 − �2�mn
2 � ��mn

sinh���mn�

− ekL���mn coth���mn� − kL��e−kL �15�

depends upon k and �mn. The factor proportional to
e−�mn�L/2+z� expresses the attenuation along z of a spin mode
going from the lower endface to the upper endface after the
substitution ��

mn=� i�mn. The result of Eq. �15� is also ob-
tained by using the factor proportional to e−�mn�L/2−z� that
gives the attenuation along the thickness of a spin mode
going from the upper to the lower endface. The quantity
f�kL ,��mn� is the most general expression of the inverse
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dynamical susceptibility for the case of nonuniform magne-
tization. The interval of variation of f�kL ,��mn� is between
zero and one for a given �mn�0 and f�kL ,��mn�→ f�kL� for
�mn→0, that is tends to the inverse dynamical susceptibility
of the uniform case. From Eq. �15� one can derive straight-
forwardly the corresponding form of the inverse dynamical
susceptibility in the framework of the local dipolar approxi-
mation. In order to do this one substitutes the wave vector
k of the Fourier representation of the Green’s-function with
the quantized wave number �mn obtaining ����mn�
=limk→�mn

f�kL ,��mn�=��mn
e−2��mn

�e−2��mn−1� + 1
2 . For intermediate

aspect ratios, that is in the range between small and moderate
aspect ratios and for moderate aspect ratio ���1� ����mn�
may be fitted by � f���mn�= 1−e−2��mn

2 �Ref. 13�. However, the
function � f���mn� violates the ultrathin limit because for L
�R it tends to ��mn and not to ��mn /2 showing a different
behavior with respect to that of ����mn�. Moreover, both
����mn� and � f���mn� suffer from the same restriction,
which is their range of variation between zero and 1/2.

In order to get the components of the dipolar magnetic
field under the assumption of nonuniform magnetization
along z, one first substitutes in Eqs. �7� and �8� for m=0 and
n modes and in Eqs. �11�, �12a�, and �12b� for �m��0 and n
modes f�kL� with f�kL ,��mn�. In this way the matrix ele-

ments evaluated numerically Ī�� and Īzz �see the Appendix�
appear in place of I�� and Izz. The corresponding simpler
expressions obtained within the local dipolar approximation
may be derived following the same calculations performed
for the case of uniform magnetization along z. We get Eqs.
�9� and �10� for m=0 and n modes and Eqs. �13�, �14a�, and
�14b� for �m��0 and n modes with ����mn� in place of
f���mn�. By using the fitted � f���mn� in place of ����mn�,
we obtain the dynamic dipolar magnetic fields found by
Zivieri and Nizzoli.13

IV. SPIN DYNAMICS

Following the same steps given in Ref. 13 the spin modes
quantized spectrum can be expressed as

�mn
2 = �M

2 ���mn
2 + h̃exch

� − d��
mn����mn

2 + h̃exch
� g + h̃exch

z s − dzz
mn� ,

�16a�

where �M =4	Ms, �=� /4	R2, h̃exch
� =Hexch

� /�M, h̃exch
z

=Hexch
z /�M, d��

mn=d��
OCmn+d��

Cmn and dzz
mn=dzz

OCmn+dzz
Cmn, g=4

−	, and s=2 ln 2−1. Here g and s are the result of the
average over the C area of the angular parts sin � and cos �,
respectively of the rotated z component of the dynamic mag-
netization in the C region by means of the Usov distribution.
n=0,1 ,2 , . . . denotes the number of radial nodes of axially
and nonaxially symmetric modes �with the exception of the
gyrotropic mode� corresponding to the zeros of the radial
boundary condition. Notice that the n=0 radial mode number
corresponds to the n=1 of other formalisms1,11,19,22 and the
different classification extends to the successive radial mode
numbers. Furthermore, in numbering the radial nodes of the
radial profiles the node close to �=0 is not taken into ac-
count. The diagonal matrix elements of the dynamic dipolar

magnetic field dii
OCmn=dii

OCmn���mn�, dii
Cmn=dii

Cmn���mn� with
i=� ,z for the case of uniform magnetization along z have
been calculated exactly and their expressions are given in the
Appendix �cf. Eq. �A15��. These elements are substituted by

the corresponding ones, namely d̄ii
OCmn= d̄ii

OCmn���mn�, d̄ii
Cmn

= d̄ii
Cmn���mn� with d̄ii

mn= d̄ii
OCmn+ d̄ii

Cmn with i=� ,z derived for
the case of nonuniform magnetization along z �see the Ap-
pendix �cf. Eq. �A21���.

Within the local dipolar approximation the diagonal ma-

trix elements d��
mn �d̄��

mn�, dzz
mnOC �d̄zz

mnOC�, and dzz
mnC �d̄zz

mnC� are
substituted by the inverse dynamical susceptibility and
weighted by the C and OC � and �1−�� factors to get

�̃mn
2 = �M

2 ���mn
2 + h̃exch

� +  ���mn�Cmn� � ���mn
2 + h̃exch

� g

+ h̃exch
z s + �1 −  ���mn����1 − �� + b��� , �16b�

with  ���mn�= f���mn� for the case of uniform magnetiza-
tion and  ���mn�=����mn� for the case of nonuniform mag-
netization. In the calculations we have also used the fitted
� f���mn�. Equation �16b�with  ���mn�=� f���mn� is very
similar to Eq. �11� of Ref. 13. Cmn are coefficients given in
the Appendix �cf. Eq. �A16��. In particular, for axially sym-
metric modes �m=0,n�, we get C0n=1 for each n setting
C0n=C0=1. For nonaxially symmetric modes ��m��0,n� we
set Cmn=Cm for n=0. Furthermore, the dynamic-exchange
terms appearing in Eqs. �16a� and �16b� would not be exactly
equal to ��mn

2 for radii in the micrometric range where the
in-plane eigenfunctions are �J1��n��eim�, but for this size
the dynamic exchange is negligible. For dots of radius vary-
ing on the micrometric scale �R�L� Eq. �16a� may be fur-
ther simplified. Indeed, not only the exchange contributions
are negligible but also dzz

mn approach one and d��
mn can be

expressed in the ultrathin dot limit so that �mn

��M���mn /2�1/2. In other words �mn��L /R as already
found in literature.3,7,11,19

The frequencies of the gyrotropic vortex mode �also
called fundamental gyrotropic mode in three-dimensional
ferromagnets21� due to the gyrotropic precession of C can be
found from Eq. �16� and from the solution of the radial
boundary condition with the smallest quantized wave num-
ber. The frequencies are less than 1 GHz and for very small
aspect ratios are approximately proportional to L /R in agree-
ment with the results of recent models.7,19 Its in-plane profile
is mainly confined in the C region and has a simple structure
along z with no nodes. This mode was not found in this range
of frequencies in our previous study13 because the frequen-
cies calculation of spin modes was done within the local
dipolar approximation resulting not valid for the gyrotropic
mode.

A. Frequency splitting of ±�m� and n modes

Let us derive quantitatively the frequency splitting
!��mn of the ��m� and n doublets from Eq. �16a�. As the
static exchange field contributes equally for both modes of
the doublets, we neglect their corresponding torque terms in
the derivation of the frequency splitting. This yields to the
following simple approximated formula of the frequency
splitting:
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!���m�n
2 = �M

2 ��−�m�n − �+�m�n�2, �17a�

with

���m�n
2 = �dzz

��m�nd��
��m�n − �dzz

��m�n + d��
��m�n������m�n�2

+ �2����m�n�4� . �17b�

For dots of �0.20 the matrix elements d̄�� and d̄zz
would appear in Eq. �17b� in place of d�� and dzz. One
singles out three dynamic contributions to the splitting. The
first one may be ascribed to the dipolar term only and is
given by both its C and OC contributions. The second term is
a mixed term due to the coupling of the contributions of the
dipolar and dynamic-exchange fields and the last one is rep-
resented by the dynamic-exchange field only. In particular,
we study the splitting of the m=�1 and n=0 doublets be-
cause for this couple of modes experimental measurements
are available. The main source of frequency splitting is due
to the terms proportional to the dynamic dipolar magnetic
fields of the doublets, but also the corresponding dynamic-
exchange fields give their contribution especially for radii in
the nanometric range. The more the scattering amplitude
��10 is large, the more d��

−10 and d��
+10 ����−10�2 and ���+10�2�

have different values and the more the splitting is important.
While dii

�10 with i=� ,z depend on the aspect ratio �, the
����10�2 terms substantially depend on the inverse power of
R2. This means that, for a fixed aspect ratio � obtained with
different R �and different L�, the splitting is larger when R is
in the nanometric range and submicrometric range because
of the non-negligible contribution of the nonuniform
dynamic-exchange term. Moreover, the rate of decrease in
the splitting with increasing R is weaker because the calcu-
lated m=�1 and n=0 frequency splittings are yet non-
negligible for radius R in the micrometric range as also con-
firmed by experimental measurements with time-resolved
Kerr microscopy �TRKM� �Refs. 7 and 14�. On the other
hand, the splitting corresponding to �m�1 and n nonaxially
symmetric modes is one orders of magnitude smaller for dots
with radius ranging in the nanometric scale. This smaller
value is due to the fact that modes of each ��m�1 and n
doublet have very close dynamic magnetic field contribu-
tions. It is worth noting that the doublet splitting of the non-
axially symmetric modes can also be interpreted in terms of
a Berry phase of magnons.

The underestimation of the frequency splitting of the m
=�1 and n=0 doublet in Ref. 13 was due to the assumption
of the same radial dipolar contribution given by � f����10�C1
with the same coefficient C1 for both modes and to the de-
pendence of the scattering amplitudes ��1 from l0 in place of
R0 �see the next section for the definition of R0�.

V. RESULTS

In the numerical calculations we have used the parameters
fitted to results of the continuous Py film:23 4	Ms=9.5 kG,
� /2	=2.996 GHz /kOe, and � /4	=2.42�10−13 cm2.
These parameters are slightly different from those used in
literature. However, we have found that the numerical dis-
crepancy on the mode frequencies is at maximum of about
5%.

In order to study the effect of C on spin dynamics, we
have chosen as scattering amplitude �m=�m�kR0� in place of
�m=�m�kl0�, where R0= �2A�1/2 /Ms plays the role of an ex-
change length �not to be confused with l0�. The quantity R0,
for the range of thicknesses investigated, is much larger than
l0 and is of the order of the C radius a. One could, in prin-
ciple, choose �m=�m�ka� with the C radius a defined as the
value for which Mz��=a�=0 on the two endfaces neglecting
the bottleneck effect24 present in dots of moderate aspect
ratio ��1. However, this choice suffers from the limitation
that a is not a constant of the magnetic material but has a
weak dependence from the dot thickness. With the param-
eters used, we get for Py R0=18 nm. Because of the small
difference between the analytical and micromagnetic distri-
bution in the peripheral C region where the latter exhibits a
larger tail, we have used the C radius determined by means
of a micromagnetic approach. We have thus set a=18 nm
for L�50 nm and a=26 nm for L�50 nm �notice the
slight different value used here for small thicknesses with
respect to Ref. 13�. Finally, for a ranging between 18 and 26
nm, the ratio between the C and OC exactly calculated dipo-
lar matrix elements does not substantially vary.

1. Frequencies of the spin modes

In Fig. 1 the frequencies vs � of the m=0, n=0 mode �the
fundamental mode F� and of the m=0, n=1 mode for uni-
form magnetization along z are depicted. This mode gives, in
general �but not always�, the largest contribution to the cal-
culated scattering cross section, and in the BLS measure-
ments it corresponds often to the highest peak. Its profile is
mainly confined in the OC region and results pinned on the
dot border. It may be considered analogous in the vortex
state of the resonant mode in the saturated state.17,25 Due to
the underestimation of the dipolar matrix element the ap-
proximated F mode frequencies �dotted line� are downshifted
with respect to the exactly calculated ones �solid line� for the
whole range of aspect ratios investigated, and the discrep-
ancy between the two curves is already 15% at small aspect
ratios and slightly increases with increasing �. The disagree-
ment becomes more important for moderate and large aspect
ratios ���1� where also the thin-film approximation does
not hold anymore. Moreover, the approximated frequencies
show a maximum at �=0.50 and then slightly monotonically
decrease. Instead, the exactly calculated frequencies have a
maximum shifted toward higher aspect ratios ��0.80�.
This general trend is due to the increase in d��

00 �in modulus�
and to the decrease in dzz

00 �in modulus� with � and leads to a
deviation from the linear dependence behavior from �� typi-
cal of dots with very small aspect ratios. Also the dynamic-
exchange term contributes in part to the deviation from the
simple �� dependence as already found for cylindrical dots
of �0.15 �Ref. 7�. Finally, notice that the mz component of
the F mode results rather unpinned for �0.30 leading to a
slight downshift of the corresponding frequencies.

In panel �b� one sees that the exactly calculated frequen-
cies for nonuniform magnetization along z �solid line� in-
crease at low aspect ratios reach a maximum at about �
=0.50 and then decrease. Instead, the approximated frequen-
cies �dotted and short-dotted lines, respectively� monotoni-
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cally increase and become constant at high �. At low � the
calculation performed using ����00� largely underestimates
the exact value �more than 15%�, while at intermediate �
both frequency curves are lower than the exact one �more
than 7%�. Finally, at large aspect ratios the approximated
frequency curves merge asymptotically toward the exact one.
Indeed, the quantities ����00��1−����00�� and � f���00��1
−� f���00�� converge toward an asymptotic value at large �
leading to the asymptotic behavior of the frequencies. As the
profile along z of the mz component of the F mode is almost
uniform especially in the OC region and with increasing �,

the corresponding matrix element d̄zz
00 is equal to dzz

00, which
is in turn very close to the static demagnetizing factor Nzz.

In panel �c� the exactly calculated frequencies according
to Eq. �16a� are compared. The effect of the z dependence
becomes progressively more important for �0.20. At high
aspect ratios the gap between the two frequency curves is
remarkable �about 14% for �=0.80� because of the lower

value of d̄��
00 with respect to d��

00 with increasing �. The cal-
culation shows that the neglected twisting effect on the static
magnetization and the formation of asymmetric domain
walls along z, especially in the C region, not only affects the
gyrotropic modes9,21 but is indirectly and partially taken into

account also in the F mode dynamics. This effect contributes
in part to the important frequency downshift of the F mode
found for nonuniform magnetization along z in dots of large
�. For the sake of comparison in the inset to panel �c� the
calculated frequencies determined by means of the local di-
polar approximation are also displayed. Also within the ap-
proximated calculation the z dependence leads to a downshift
of the F mode frequencies. Nevertheless, this effect for in-
termediate and large � is masked by the asymptotic behavior
of the function ����00��1−����00��.

Similar conclusions may be drawn for the m=0 and n
=1 mode frequencies �panels �d�–�f�� even though the under-
estimation effects due to the local dipolar approximation are
less pronounced �on average about 5%�. Also the effect of
the z dependence for �0.25 causes a downshift of the fre-
quencies that is on average of only 3%. The weight of the C
effective field, assuming the yet valid quantized wave num-
ber obtained from the radial boundary condition of the stan-
dard dot, on the frequencies of the F and the m=0 and n
=1 modes, respectively, is calculated by neglecting in Eq.
�16a�, the corresponding d��

Cmn and dzz
Cmn �cf. Eq. �A15�� or

d̄��
Cmn and d̄zz

Cmn �cf. Eq. �A21�� together with the C contribu-
tion of the static exchange field. For R=100 nm the C effect
for both uniform and nonuniform magnetizations along z
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FIG. 1. Panel �a�: Solid line: frequency behavior of the F mode vs � for R=100 nm derived by means of Eq. �16a� for uniform
magnetization. Dotted line: the same but according to Eq. �16b� with f���00�. Panel �b�: Solid line: as in panel �a� but for nonuniform
magnetization. Dotted line: the same but obtained from Eq. �16b� with ����00�. Short-dotted line: the same but with � f���00�. Panel �c�:
Solid line: frequency behavior of the F mode vs � for R=100 nm according to Eq. �16a� with nonuniform magnetization. Dashed line: the
same but with uniform magnetization. Inset: Solid line: the same but using Eq. �16b� with ����00�. Dashed line: the same but with f���00�.
Panel �d�: as in panel �a� but for the m=0 and n=1 modes. Panel �e�: as in panel �b� but for the m=0 and n=1 modes. Panel �f�: as in panel
�c� but for the m=0 and n=1 mode.
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turns out to be about 20% and is for the F mode about 5%
smaller than the one estimated within the local dipolar
approximation.13

The frequency behavior of the F mode vs R is displayed
in Fig. 2. The same effects due to the local dipolar approxi-
mation discussed for the frequencies vs � are present here,
both considering uniform and nonuniform magnetization
along z. In the inset to panel �b� one sees that, in the ultrathin
dot limit L�R, the frequencies of the F mode calculated
according to Eq. �16a� are proportional to �� �Refs. 3, 7, 11,
and 14�. The calculation has been done by using as radial
eigenfunction for the F mode a form proportional to
J0��00��+�00Y0��00��, but one would have obtained the
same frequency behavior �with slightly different frequencies�
by using a form proportional to J1��0��.

Figure 3 displays the frequency behavior of the m=�1
and n=0 couple of modes as a function of �. The general
effect of the approximated calculation �dotted line� is the
underestimation of the exactly calculated frequencies for the
whole range of � �on average about 8% at small � and about
5% at large �� due to the underestimation of the matrix ele-
ments d��

�10 �see panel �a��. Apart from that the approximated
frequencies present a maximum at ��0.40 reproducing the
qualitative trend of the exactly calculated ones.

In panel �b� the same comparison is displayed for nonuni-
form magnetization along z. The behavior of the frequencies

can be understood on the basis of the same arguments previ-
ously presented for the axially symmetric modes. In both
approximated calculations shown in panels �a� and �b�, we
have found C+1=0.40 and C−1=0.57 according to Eq. �A16�
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FIG. 2. Panel �a�: Solid line: frequency behavior of the F mode
vs R for L=50 nm obtained according to Eq. �16a� for uniform
magnetization along z. Dotted line: the same but according to Eq.
�16b� with f���00�. Panel �b�: Solid line: as in panel �a� but for
nonuniform magnetization along z. Dotted line: the same but using
Eq. �16b� with ����00�. Short-dotted line: the same but using Eq.
�16b� with � f���00�. Inset: frequency behavior of the F mode vs ��
for L=15 nm.
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FIG. 3. Panel �a�: Solid lines: frequency behavior for R
=100 nm of the m=�1 and n=0 modes vs � derived by means of
Eq. �16a� for uniform magnetization along z. Dotted lines: the same
but according to Eq. �16b� with f����10�C�1. Panel �b�: Solid
lines: as in panel �a� but for nonuniform magnetization. Dotted
lines: the same but obtained from Eq. �16b� by use of
�����10�C�1. Short-dotted lines: the same but with � f����10�C�1.
Panel �c�: Solid lines: frequency behavior for R=100 nm of the
m=�1 modes vs � according to Eq. �16a� for nonuniform magne-
tization along the thickness. Dashed lines: the same but for uniform
magnetization along z. Inset: Solid lines: frequency behavior of the
m=�1 and n=0 modes vs � using Eq. �16b� with �����10�C�1.
Dashed line: the same but with f����10�C�1.
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for the whole range of thicknesses investigated. Due to the
divergence of the Bessel function of the second kind Y�1 for
�→0, a careful calculation of the coefficients C�1 is needed.
Hence, we have determined C�1 by averaging, when carry-
ing out the �� integration, the value obtained dividing the
numerator in the second member of Eq. �A16� evaluated for
��a by the integral over � in the denominator for zero �but
yet finite� and the one calculated evaluating both the numera-
tor and the integral over � at the denominator for ��a. A
similar procedure has been followed for the calculation of

the d��
�10 and d̄��

�10 matrix elements to obtain the exact fre-
quencies. The C+1 is equal to that found in Ref. 13 that was
nevertheless obtained via a different calculation. Indeed, due
to the smaller degree of divergence of �10��10l0�Y1��10��,
only the value for ��0 �with �→0 in that case� was calcu-
lated. Finally, the error in the calculation of the m=�1 and
n=0 mode frequencies caused by the local dipolar approxi-
mation is less pronounced with respect to that of the F mode
frequencies for dots of nanometric size.

Quantitatively the downshift of the frequencies obtained
for nonuniform magnetization is of the order of 3% as shown
in panel �c�. In the inset to panel �c� the same comparison is
shown taking into account the local dipolar approximation.
Conclusions similar to the case of axially symmetric modes
may be drawn for the m=�1 and n=0 doublet. Finally, the
C effect for R=100 nm calculated in the same way as done
for the axially symmetric modes is more pronounced on the
m=−1 and n=0 mode frequencies because of its larger scat-
tering amplitude. The average effect on the two frequencies
of the doublet is about 10% for dots of radius R=100 nm
and thickness L�50 nm, where a=18 nm and slightly
larger �about 14%� for L�50 nm. This result is the same
both for uniform magnetization and for nonuniform magne-
tization along z, and the C effect is on average more than
10% smaller than the one derived within the local dipolar
approximation.13

In Fig. 4 we show the frequencies of the m=�1 and n
=0 modes vs R at L=50 nm. One sees that by using
� f����10�C�1 �short-dotted line in panel �b��, an overestima-
tion of the exactly calculated frequencies especially for R
200 nm is present due to the violation of the ultrathin dot
limit. The gap between the m=�1 and n=0 mode frequen-
cies obtained within the local dipolar approximation �cf. Eq.
�16b�� in both panels �a� and �b� is smaller, with increasing
the radius R, than the one derived within the exact calcula-
tion �cf. Eq. �16a��. In the inset to panel �b� it is shown that,
in the ultrathin dot limit L�R, also the frequencies of the
m= +1 and n=0 modes are proportional to ��. The frequen-
cies of the m=−1 and n=0 modes �not shown� have a similar
behavior. In order to better evaluate the effect of the C region
for dots of R�500 nm and thickness L=50 nm ��
0.10�,
we have considered for the calculation of d��

�10 and d̄��
�10

equivalent dots of fixed radius R=100 nm with the same
aspect ratio �. Even though it may lead to a slight overesti-
mation of the frequency splitting this approach is reasonable
because the dipolar matrix elements depend on �. Moreover,
in this way it is also assumed that the quantitative effect of
the scattering amplitude ��10 on the matrix elements is the
same for fixed �. In the calculation of the frequencies the

scattering amplitude, which enters in the determination of the
quantized wave number has then been evaluated in corre-
spondence of the effective radius.

In Fig. 5, panel �a� the radial profile of the modulus of the
� component of the static exchange field Hexch

� ��� is shown
for a Py dot of radius R=100 nm and thickness L=50 nm
where the effect of the static exchange field on spin modes
frequencies is non-negligible. The � component of the ex-
change field vanishes for �=0, reaches a maximum in the C
region at about one half of the C radius, and then progres-
sively reduces in the OC region to converge asymptotically
to zero on the dot border. In panel �b� for the sake of com-
parison we show the profile of the corresponding modulus of
the z component Hexch

z ��� of the static exchange field.
In panel �c� the exactly calculated frequencies of the F

mode �solid line� are compared with the ones obtained ne-
glecting the static exchange contribution to the torque in Eq.
�16a� �dotted line�. The effect is an upshift of the frequencies
on average of about 5% for the whole range of � investi-
gated. The dash-dotted curve results from the calculation car-
ried out neglecting both the static exchange contribution and
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FIG. 4. Panel �a�: Solid lines: frequency behavior of the m
=�1 and n=0 modes vs R for L=50 nm obtained with Eq. �16a�
for uniform magnetization along the thickness. Dotted lines: the
same but according to Eq. �16b� with f����10�C�1. Panel �b�: Solid
lines: as in panel �a� but for nonuniform magnetization along the
thickness. Dotted lines: the same but using Eq. �16b� with
�����10�C�1. Short-dotted lines: the same but with � f����10�C�1.
Inset: frequency behavior of the m= +1 mode vs �� for L
=15 nm.
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the nonuniform dynamic exchange to the torque in Eq. �16a�.
One notes that the obtained frequencies overestimate the ex-
actly calculated ones of about 2%. This means that for the F

mode frequencies the effect of the dynamic-exchange torque
is almost totally counterbalanced by the static exchange
torque.

For the m=−1 and n=0 mode frequencies, the upshift
obtained neglecting the static exchange contribution to the
torque �see panel �d�� is on average of 5% for the whole
range of thicknesses, while the upshift of the m= +1 and n
=0 mode frequencies is more accentuated at small � �about
10%� and reduces at large thicknesses �about 6%�. Instead,
when one neglects both the static and the dynamic nonuni-
form exchange contributions to the torque the frequency
curves of the doublet are clearly downshifted with respect to
the exactly calculated ones showing an opposite behavior
with respect to the F mode. In particular, for the m=−1 and
n=0 modes, this downshift is about 8% at small � and about
5% at large �. The same effect is smaller for the m= +1 and
n=0 modes whose downshift is on average about 2%. Indeed
the nonuniform exchange contribution of the m=�1 and n
=0 modes to the torque is larger than the corresponding one
of the F mode. The quantitative effect of the static exchange
field on the frequencies of the m=0 and n�0 modes and of
the m=�1 and n�0 modes is very close to the one derived
for the F mode and to that of the m=�1 and n=0 modes,
respectively. This is true also for the �m�1 and n modes.
Instead, if one neglects both the static- and dynamic-
exchange field the quantitative effect is different for the dif-
ferent modes due to the different dynamic-exchange contri-
butions.

In Fig. 6 we show the frequency behavior of the most
representative ��m� and n=0 doublets with �m�=2,3, respec-
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FIG. 5. Panel �a�: radial profile of �Hexch
� ���� for a dot of radius

R=100 nm and thickness L=50 nm. Panel �b�: corresponding ra-
dial profile of �Hexch

z ����. Panel �c�: frequencies of the F mode vs �.
Solid line: exactly calculated frequencies by means of Eq. �16a� for
nonuniform magnetization. Dotted line: calculated frequencies ob-
tained neglecting the static exchange contribution to the torque in
Eq. �16a�. Dash-dotted line: calculated frequencies obtained ne-
glecting both the static and the nonuniform dynamic exchange con-
tributions to the torque in Eq. �16a�. Panel �d�: as in panel �c� but
for the frequencies of the m=�1 and n=0 modes.
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FIG. 6. Panel �a�: Solid lines: frequencies the m=�2 and n=0 modes vs � according to Eq. �16a� with nonuniform magnetization along
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tively. The calculated frequency splitting of the m=�2 and
n=0 modes is small �less than 0.1 GHz� and of the same
orders of magnitude as the one calculated by Ivanov and
Zaspel12 for the m=�2 doublet. Conclusions analogous to
the case of the m=�1 and n=0 doublets on the quantitative
effect of the z dependence of the dynamic magnetization may
be drawn for the m=�2, n=0, and m=�3, n=0 frequen-
cies, respectively �panels �a� and �c��. Also the effect of the
local dipolar approximation on the frequencies compared to
the exact calculation �panels �b� and �d�� show the same limi-
tations found for the m=�1 and n=0 doublet for R�L. The
frequency calculation in panel �b� and �d� is less detailed for
R in the submicrometric range because we were interested to
show the general behavior of the frequencies of the m=�2
and n=0, and m=�3 and n=0 modes for R ranging from
nanometric to micrometric size. Moreover, for the m=�3
and n=0 frequencies the local dipolar approximation seems
to cause a larger overestimation of the exact calculations
with respect to the m=�1, m=�2 and n=0 doublets. We
are reminded that, due to convergence problems present for

�m��3 modes, we have extrapolated the d��
�30 and d̄��

�30 ma-

trix elements from the behavior of d��
��m�0 and d̄��

��m�0 for �m �

2 for uniform and nonuniform magnetization, respectively.
In the inset to panel �d� we show for a dot of radius R
=3000 nm and thickness L=15 nm the frequency behavior
as a function of the mode number m for m=0,1 ,2 ,3 and n
=0 calculated according to Eq. �16a� for uniform magnetiza-
tion along z. The frequencies for m�0 correspond to the
mean values of the frequencies of the ��m� doublets. Since
we were interested in the qualitative behavior of the frequen-
cies we have used as corresponding radial eigenfunctions in
the calculations the form proportional to J�m���m0��
−�m0Y �m���m0��, but one would have obtained a similar result
�with small differences in the corresponding frequencies� by
using the more plausible form proportional to J1��0��. One
sees the typical negative dispersion of frequency for m�0
modes due to the behavior of the dipolar term when the
exchange effects are negligible as found by Buess et al.4,11

In order to determine the coefficients Cm with m
=�2,�3,�4,�5, we have used the unperturbed radial
eigenfunctions J�m���m0�� in Eq. �A16� because ��m���1
�Ref. 1�. Hence, also C+m=C−m=Cm and C+3=C−3=C3. The
obtained numerical values turn out to be C2=0.37, C3
=0.31, C4=0.27, and C5=0.24, respectively for each �. One
notes that C2 and C3 �C4 and C5� are larger than 0.10 �0.12�
with respect to the ones given in Ref. 13, but we believe that
these higher values may be regarded as more realistic be-
cause they have been calculated, avoiding the numerical
problems related to the Ym divergence for �→0, which are
difficult to treat.13 The quantitative effect on the correspond-
ing frequencies of the discussed doublets caused by the
larger calculated Cm is an upshift of the frequencies of about
1 GHz with respect to the ones calculated in Ref. 13. Finally,
the weight of the C region on the ��m� and n=0 frequencies
with �m�1 is smaller with respect to the one on the ��m�
=1 doublet for a dot of radius R=100 nm because of the
smaller value of the corresponding scattering amplitudes and
can be considered almost negligible. It is important to note
that the real C effect on the spin modes can be evaluated

removing the C region such as the case of rings where also
the splitting of nonaxially symmetric modes is not present
anymore.14

2. Comparison with experimental data

In Fig. 7 the calculated frequencies of the modes that are
more active in the scattering cross section are compared with
experimental data. Panel �a� displays this comparison as a
function of the aspect ratio � at a fixed radius R=100 nm.
The frequencies obtained by means of Brillouin light scatter-
ing �BLS� were measured from arrays of dots whose interdot
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FIG. 7. Panel �a�: Solid lines: frequency behavior of the most
representative axially symmetric modes for radius R=100 nm vs �
according to Eq. �16a� for nonuniform magnetization along z. Full
circles: BLS data from Ref. 8. Panel �b�: Solid lines: as in panel �a�
but as a function of R for L=15 nm and for uniform magnetization.
Dashed-dotted lines: the frequencies are obtained according to Eq.
�16a� for uniform magnetization along the thickness by using the
trial radial eigenfunction J1��n�� for n=0,1 ,2. Full circles: BLS
data from Ref. 8. Full up-triangles: TRKM data from Ref. 11. Panel
�c�: Solid line: frequencies of the F mode as a function of R for
L=50 nm according to Eq. �16a� for nonuniform magnetization
along z. Dashed line: the frequencies are obtained according to Eq.
�16a� for uniform magnetization along z by using the trial radial
eigenfunction J1��0��. Full circles: BLS data �the BLS data are
courtesy of Gubbiotti and Carlotti, Perugia�. The bold lines in pan-
els �a� and �b� mark the calculated mode frequency �F� associated
with the predominant spectral line. Panel �d�: as in panel �a� but for
the m=�1 and n=0 modes. The meaning of the symbols is the
same as in panel �a� �from Ref. 8�. Panel �e�: frequency behavior of
the �m�=1 and n=0 and of the �m�=2 and n=0 modes vs R. Solid
line: calculated frequencies by means of Eq. �16a� for uniform mag-
netization along the thickness. Open up triangles: TRKM measured
frequencies of the m=1 and n=0 modes �in Ref. 11�. Full up tri-
angles: TRKM measured frequencies of the m=2 and n=0 modes
�from Ref. 11�. Panel �f�: as in panel �c� but for the m=�1 and n
=0 modes. The meaning of the symbols is the same as in panel �c�.
The BLS data are courtesy of Gubbiotti and Carlotti, Perugia.
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separation is equal to 2R so that the interdot dipolar coupling
can be considered negligible. The good fit between calcu-
lated and measured frequencies allows us to identify unam-
biguously the different modes as a function of the radial
number. The overall agreement with BLS data8 is very good
at small �. Instead, at large � the F mode calculated frequen-
cies seem to overestimate the experimental frequencies. For
�=0.80 this overestimation is of the order of 5%. This dis-
agreement may be ascribed to some of the assumptions made
within the present model. In particular, it may be due to the
fact that the twisting effect of the static magnetization in dots
of moderate aspect ratios9 has not been taken into account in
this model. This approximation can affect the calculation of
both the static and dynamic contributions appearing in the
quantized spectrum �cf. Eq. �16a��. Furthermore, the diago-
nal approximation for the calculation of the quantized spec-
trum could be a further source of error for the estimation of
the frequencies for any �. Finally, the m=0 and n=2 mode
frequencies underestimate the BLS frequencies especially at
�=0.35 and at �=0.80. Notice that in the calculation of the
corresponding dipolar matrix elements we have assumed that
the scattering amplitude �02 is negligible likewise �01.

The agreement between theory and experiment is very
good both in the nanometric and in the micrometric scale for
the frequencies of the F, m=0 and n=1, and m=0 and n
=2 modes, respectively, versus R �panel �b��. The calculation
of the m=0, n=1 and m=0, n=2 mode frequencies is less
detailed for R in the submicrometric range with respect to the
one of the F mode because, differently from the F mode, we
were mainly interested in comparing the theoretical frequen-
cies with measurements available for dots of R�1000 nm.
In the submicrometric and in the micrometric range the dash-
dotted lines �R�500 nm for F, R�1000 nm for m=0, n
=1, and m=0, n=2 modes, respectively� represent the fre-
quencies calculated by using as trial radial eigenfunction the
Bessel function of the first kind J1��n�� with n=0,1 ,2. One
sees that the agreement of these calculated frequencies with
TRKM data is excellent. The slight downshift with respect to
the frequencies obtained using as the radial eigenfunction a
form proportional to J0��0n�+�0nY0��0n� is due to the
smaller values of the corresponding dipolar matrix elements.
Similar conclusions can be drawn from the analysis of the
results reported in panel �c� for thicker dots of L=50 nm. In
this case the comparison with the measured BLS data is per-
formed for the calculated F mode frequencies only and for
radii ranging between R=100 nm and R=500 nm where
BLS data are available.

In panel �d� the m=�1 and n=0 frequencies obtained
according to Eq. �16a� under the assumption of nonuniform
magnetization along z are displayed. The agreement with the
BLS frequencies is very good for �=0.50. For smaller � the
calculated frequencies are slightly downshifted with respect
to the measured frequencies, and this discrepancy is more
evident for �=0.15. We believe that the BLS frequency at
�=0.50 nm at 12.6 GHz may be assigned to a spin excita-
tion localized within a transition zone surrounding the vortex
core as supported by the micromagnetic results of Ref. 9.
Also for the comparisons shown in panels �c� and �d� the
good fit between experiment and theory allows us to identify
unambiguously the discussed spin modes.

In panel �e� we show the mean frequencies labeled with
�m�=1 and �m�=2 of the m=�1, n=0 and m=�2, n=0
doublets, respectively, compared to the TRKM frequencies
measured applying a magnetic tipping pulse field perpen-
dicular to the dot plane.11 This procedure is only approxi-
mately true for the m=�1 and n=0 doublets whose corre-
sponding scattering amplitudes ��10 do not have exactly
opposite values. However, we have found that the dipolar
matrix elements d��

10 and dzz
10, calculated by using it as radial

eigenfunction �a form proportional to the J1��10�� Bessel
function of the first kind only�, are very close to the mean
values of the corresponding d��

�10 and dzz
�10 matrix elements,

respectively. The overall agreement between theory and ex-
periment is excellent for the �m�=1 frequencies and is very
good for the �m�=2 frequencies. The slight overestimation of
the m=2 and n=0 TRKM frequencies at large radii may be
due to the choice of the J2���20�� radial part of the trial
eigenfunction instead of J1��0�� that should be more plau-
sible in the micrometric range.

The calculated frequencies of the m=�1 and n=0 modes
according to Eq. �16a� as a function of R for L=50 nm are
compared with the BLS data �panel �f��. As expected, the gap
between the two frequency curves reduces with increasing R,
but also at R=500 nm, is larger than 1 GHz. The full circles
correspond to well-resolved peaks of BLS spectra at different
R for this range of frequencies, but a calculation of the scat-
tering cross section for R100 nm would be required to
confirm that the BLS peaks are those corresponding to the
m=�1 and n=0 doublets. Finally, notice that, in spite of
good estimation of the corresponding measured splitting �see
Fig. 8�, the calculated frequencies for R�500 nm overesti-
mate by more than 1 GHz the experimental frequencies of
the m=�1 doublet measured with the TRKM technique6

and not shown here.
Figure 8 shows the comparison of the calculated fre-

quency splitting of the m�1 and n=0 modes with the ex-
periment. Different from recent analytical models, which
largely underestimate the splitting of this doublet,1,13 our cal-
culations are in very good agreement with measurements.
The frequency splitting monotonically increases with in-
creasing �, and the rate of increase becomes lower at large
aspect ratios. The measured splitting at �=0.086 and at �
=0.10 and for radii in the submicrometric range have been
obtained with the TRKM technique reported in Refs. 5 and 6,
respectively. Instead the measured splitting shown at �
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FIG. 8. Frequency splitting of the m=�1 modes vs �. Open
circles: calculated splitting. The line connecting the points is a
guide to the eye. Full circles: BLS data from Ref. 8. Full up-
triangles: TRKM data from Refs. 5, 7, and 14.
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=0.015 has been obtained with the TRKM technique but for
dots of radius in the micrometric range, viz. R=1000 nm
�Ref. 14�. We show for ��0.15 the frequency splitting ob-
tained in dots of radius R=100 nm by the BLS spectra for
different L. The slight discrepancy at small � between the
calculated and the measured splitting may be due to an over-
estimation of the effect of C due to the approach followed for

the calculation of d��
�10 and d̄��

�10 for dots of radius in the
submicrometric and micrometric range described previously.

The approximated formula of Eqs. �17a� and �17b� repro-
duces the exact calculation for dots with ��0.50 for R
=100 nm and for dots of radius R200 nm for any �
where the static exchange effects are negligible. We have
found that the dynamic dipolar term of Eq. �17b� for a typi-
cal radius R=100 nm and for the whole range of thicknesses
investigated gives a contribution of about 80% to the fre-
quency splitting, while the mixed dipole-exchange and the
nonuniform dynamic-exchange terms contribute for the re-

maining 20%. For larger radii the source of frequency split-
ting is of purely dipolar origin.

3. Spatial profiles of the most representative spin modes

The radial profiles of the dynamic dipolar magnetic field
�� and z components� of the F mode in a thin dot are shown
in Fig. 9 �panels �a�–�c��. These profiles have been obtained
according to Eqs. �7� and �8�. In particular, the analytical
integration over k has been followed by the numerical inte-
gration over �� for different values of �. Then an interpola-
tion procedure has been performed. Panel �a� displays the
hd�

00��� component. Its radial profile is very similar to that of
the corresponding m�

00��� component shown in the inset
whose profile is mainly localized in the OC region of the dot.
However, the different degree of pinning on the dot border of
the dynamic dipolar magnetic field is the evidence of its
nonlocal character. In panel �b� one sees that the hdz

OC00���
component is mainly localized in the OC region even though
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FIG. 9. Panel �a�: radial profile of the hd
�00 component in a dot of radius R=100 nm and thickness L=15 nm. Inset: radial profile of the

corresponding m�
00 component. Panel �b�: as in panel �a� but for hd

zOC00. Panel �c�: as in panel �a� but for hd
zC00. Panel �d�: radial profile of

hd
�−10 in a dot of radius R=100 nm and thickness L=15 nm. Inset: radial profile of the corresponding m�

−10 component. Panel �e�: as in panel
�d� but for the hd

zOC−10 component. Panel �f�: as in panel �d� but for the hd
zC−10 component. The components m�, hd

�, and hd
z were plotted for

each mode apart from the corresponding complex magnetization amplitudes.
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its profile has a tail in the C region. Instead, hdz
C00��� has an

almost vanishing magnitude in the dot center, is mainly lo-
calized in the C region, and progressively decays going to-
ward the dot border as depicted in panel �c�. This behavior
indicates that, due to their nonlocal character, both the C and
OC dynamic dipolar magnetic fields are not strictly localized
in the C and OC regions, respectively.

The corresponding radial profiles of the dynamic dipolar
components of the m=−1 and n=0 mode �hd�

−10�� ,��,
hdz

OC−10�� ,��, and hdz
C−10�� ,��, respectively� have been calcu-

lated according to Eqs. �11�, �12a�, and �12b� with the same
calculation procedure used for the F mode and are summa-
rized in panels �d�–�f�. In panel �d� the radial profile of
hd�

−10�� ,�� is shown. Because of its nonlocal character, the
degree of pinning at the dot center is much more important
with respect to the one of the radial profile of the m�

−10�� ,��
component �inset to panel �d��, which is instead almost un-
pinned. At the dot border both profiles are strongly pinned
but with a slightly different degree of pinning. The radial
profiles of the hdz

OC−10�� ,�� and hdz
C−10�� ,�� components may

be understood by means of the same arguments presented for
the F mode. Also in this case the effect of the nonlocal char-
acter of the dynamic dipolar magnetic field is highlighted.
Similar considerations can be carried on for the dynamic
dipolar magnetic field profile of the m= +1 and n=0 modes
not reported here.

In Fig. 10 some profiles along z for a dot of radius
R=100 nm and for different thicknesses are shown. Panels
�a�–�c� show the profiles along the z coordinate of the
m� component of the F mode for L=15 nm, L=50 nm, and
L=80 nm, respectively. These z profiles have been obtained
by use of a linear combination of the dynamic magnetization
component m� of one mode on the upper endface and of
another mode on the lower endface, which interact with
each other, taking into account that ��

00=� i�00. This combi-
nation is proportional to �e−�00�L/2+z�+e−�00�L/2−z�� with
�00= �2.5�105� cm−1. As expected, one sees that the profile
nonuniformity along z increases with increasing the thick-
ness L. Similar profiles characterize the other modes. In par-
ticular, with increasing the mode number �both m and n�, the
disuniformity becomes more important. If one adds the wave
number quantization obtained from the “mixed” exchange
boundary condition along the dot thickness, the resulting ef-
fect is a more noticeable nonuniformity of the z profiles,
especially in the C region. However, this further effect does
not affect the spin mode frequencies. We stress that, if one
would take into account the “mixed” exchange boundary
condition along z only, the profile of each mode along the
thickness would exhibit more or less the same degree of
disuniformity, but the downshift on the spin mode frequen-
cies would be of the same orders of magnitude of the one
found according to this model. The “mixed” exchange
boundary condition plays instead a crucial role for the be-
havior of C modes with nodes exhibiting important localiza-
tion effects along the thickness. These modes found by
means of micromagnetic calculations and classified as first-
order �V1� and second-order �V2� gyrotropic vortex modes by
Yan et al.21 in Py rectangular prisms will be the subject of
another study.

VI. CONCLUSIONS

In this paper we have studied the role of the dipolar mag-
netic fields on the spin mode frequencies in dots with R
ranging from the nanometric to the micrometric size. The
dipolar matrix elements have been calculated exactly for
each spin mode examined, and the effect on the frequencies
has been investigated. The general conclusion is that, aside
from a few cases related to the special behavior of the in-
verse dynamical susceptibility fitted function, the local dipo-
lar approximation leads to an underestimation of the frequen-
cies.

The entity of the tridimensionality effect, partially taken
into account by considering a z dependence in the dynamic
magnetization, has been investigated. Its effect is to cause a
slight downshift of the frequencies for dots of aspect ratio
��0.20 with the exception of the F mode frequency where
the downshift is larger. We have also predicted the deviation
from �� in dots of moderate aspect ratios. The experimental
splitting of the ��m� and n doublets has been explained
quantitatively in terms of both dipolar and exchange contri-
butions. Our results are fully consistent with recent experi-
mental findings obtained by means of different techniques
and the overall agreement is very good.
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FIG. 10. Panel �a�: z profile of m�
00 for the F mode in a dot of

radius R=100 nm and thickness L=15 nm. z /R=−0.075 corre-
sponds to the lower endface surface and z /R=0.075 corresponds to
the upper endface surface. Panel �b�: as in panel �a� but for L
=50 nm. Panel �c�: as in panel �a� but for L=80 nm. The compo-
nent m00

� was plotted apart from the corresponding complex mag-
netization amplitude.
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APPENDIX: INTEGRALS CALCULATION AND
DIAGONAL MATRIX ELEMENTS

1. Uniform magnetization along the thickness

The integrals I��
m �� ,��� and Izz

m�� ,��� for m
=0,�1,�2,. . . for the case of uniform magnetization are
analytically calculated.

a. Axially symmetric modes

I��
0 ��,��� = �

0

�

dkkf�kL�J1�k��J1�k���

=
1

��
���� − �� + I1

0��,��� + I2
0��,��� ,

where J1�k��=−J0��k��. Here,

I1
0��,��� = −

1

L
�

0

�

dkJ1�k��J1�k���

= −
1

L�
��

2�2 2F1�1

2
,
3

2
,2,

��2

�2 � if ��� �

�

2��2 2F1�1

2
,
3

2
,2,

�2

��2� if �� � ,�
�A1�

I2
0��,��� =

1

L
�

0

�

dke−kLJ1�k��J1�k��� =
1

L

1

	�����1/2Q1/2�s� .

�A2�

Instead Izz
0 �� ,���= 1

��
����−��−
0

�dkkf�kL�J0�k��J0�k���
= I3

0�� ,���+ I4
0�� ,���, with

I3
0��,��� =

1

L
�

0

�

dkJ0�k��J0�k���

=
1

L�
2

	�
K���2

�2 � if ��� �

2

	��
K� �2

��2� if �� � ,� �A3�

I4
0��,��� = −

1

L
�

0

�

dke−kLJ0�k��J0�k���

= −
1

L

1

	�����1/2Q−1/2�s� . �A4�

These integrals are calculated after inserting f�kL�=1
− 1−e−kL

kL . 2F1 is the hypergeometric function, K is the com-
plete elliptic integral of the first kind, and Q1/2 and Q−1/2 are
Legendre functions of the second kind of fractional order 1

2

and − 1
2 , respectively, with s= �2+��2+L2

2���
.

b. Nonaxially symmetric modes

We write

Ī��
m ��,��,�� = I��

m ��,���eim�

with

I��
m ��,��� = �

0

�

dkkf�kL��Jm−1�k�� − m
k�Jm�k����Jm−1�k���

− m
k��

Jm�k���� = I1
m��,��� + I6

m��,��� + I7
m��,���

after inserting f�kL�=1− 1−e−kL

kL and using the Bessel recur-
rence relation Jm� �x�=Jm−1�x�− m

x Jm�x�. In particular,
I6

m�� ,���= I6a
m �� ,���+ I6b

m �� ,���+ I6c
m �� ,���+ I6d

m �� ,��� and
I7

m�� ,���= I7a
m �� ,���+ I7b

m �� ,���+ I7c
m �� ,���+ I7d

m �� ,���. We get

I1
m��,��� = �

0

�

dkk�Jm−1�k�� −
m

k�
Jm�k����Jm−1�k��� −

m

k��
Jm�k���� =�

1

��
���� − �� −

1

2
m
���m−1�

��m+1� if ��� � and m 
1

2

1

��
���� − �� −

1

2
m

1

�2 if �� = � and m 
1

2

1

��
���� − �� −

1

2
m
��m−1�

���m+1� if �� � and m 
1

2
,
�

�A5�
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I6a
m ��,��� = −

1

L
�

0

�

dkJm−1�k��Jm−1�k��� = −
1

L� 1

	1/2

"�m −
1

2
�

"�m�
���m−1�

�m 2F1�1

2
,m −

1

2
,m,

��2

��2� if ��� � and m 
1

2

1

	1/2

"�m −
1

2
�

"�m�
��m−1�

��m 2F1�1

2
,m −

1

2
,m,

�2

��2� if �� � and m 
1

2
,�

�A6�

I6b
m ��,��� =

1

L

m

�
�

0

�

dk
1

k
Jm�k��Jm−1�k��� =

1

L� 1

	1/2

"�m −
1

2
�

"�m�
m
���m−1�

�m 2F1�−
1

2
,m −

1

2
,m,

��2

�2 � if ��� � and m 
1

2

1

2�	�1/2

"�m −
1

2
�

"�m + 1�
m
��m−1�

��m 2F1�1

2
,m −

1

2
,m + 1,

�2

��2� if �� � and m 
1

2
,�

�A7�

I6c
m ��,��� =

1

L

m

��
�

0

�

dk
1

k
Jm−1�k��Jm�k���

=
1

L� 1

2�	�1/2

"�m −
1

2
�

"�m + 1�
m
���m−1�

�m 2F1�1

2
,m −

1

2
,m + 1,

��2

�2 � if ��� � and m 
1

2

1

	1/2

"�m −
1

2
�

"�m�
m
��m−1�

��m 2F1�−
1

2
,m −

1

2
,m,

�2

��2� if �� � and m 
1

2
,� �A8�

I6d
m ��,��� = −

1

L

m2

���
�

0

�

dk
1

k2Jm�k��Jm�k��� =

−
1

L� 1

2�	�1/2

"�m −
1

2
�

"�m + 1�
m2���m−1�

�m 2F1�−
1

2
,m −

1

2
,m + 1,

��2

�2 � if ��� � and m 
1

2

1

2�	�1/2

"�m −
1

2
�

"�m + 1�
m2�

�m−1�

��m 2F1�−
1

2
,m −

1

2
,m + 1,

�2

��2� if �� � and m 
1

2
.� �A9�

"�x� is the Euler function of argument x,

I7a
m ��,��� =

1

L
�

0

�

dke−kLJm−1�k��Jm−1�k��� =
1

L

1

	�����1/2Qm−3/2�s� , �A10�

with Qm−3/2 the Legendre function of the second kind of fractional order. It is26

I7b
m ��,��� = −

1

L

1

2

m

�
�

0

�

dk
1

k
e−kLJm�k��Jm−1�k���

= −
1

L

1

2

m

�

"�2m − 1��1

2
���m−1�1

2
��m

"�1

2
�"�m +

1

2
� �

0

	

d#̃
sin2m #̃

�L2 + 2iL� cos #̃ − �2 cos2 #̃ + ��2�m−1/2 . �A11�
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I7c
m �� ,��� is obtained from I7b

m �� ,��� by interchanging � with
��. The integral on the second member of Eq. �A11� may be
solved analytically, and I7b

m �� ,��� is expressed in terms of
elliptic integrals of the first kind F�# ,k�, elliptic integrals of

the second kind E�� , k̄� and E� 1
# , 1

k̄
�, and incomplete elliptic

integrals of the third kind $�n̄ ,� , k̄�. #, k, k̄, �, 1
# , 1

k̄
, and n̄

are different arguments of the complete elliptic integrals. A
similar expression may be found for I7c

m �� ,���. Using the
Bessel recurrence relation Jm�x�= x

2m �Jm+1�x�+Jm−1�x�� the
integral I7d instead may be written as

I7d
m ��,��� =

1

L

1

4��0

�

dke−kLJm+1�k��Jm+1�k��� − �
0

�

dke−kLJm−1�k��Jm−1�k���� =
1

L

1

4

1

	�����1/2 �Qm+1/2�s� − Qm−3/2�s�� ,

�A12�

with Qm+1/2 and Qm−3/2 the Legendre functions of fractional order.

Instead Īzz
m�� ,�� ,��= Izz

m�� ,���eim�, with Izz
m�� ,���= 1

��
����−��−
0

�dkkf�kL�Jm�k��Jm�k���= I8
m�� ,���+ I9

m�� ,���, where

I8
m��,��� =

1

L
�

0

�

dkJm�k��Jm�k��� =
1

L� 1

	1/2

"�m + 1
2�

"�m + 1�
��m

��m+1� 2F1�1

2
,m +

1

2
,m + 1,

��2

�2 � if ��� �

1

	1/2
"�m + 1

2�
"�m + 1�

�m

���m+1� 2F1�1

2
,m +

1

2
,m + 1,

�2

��2� if �� � ,� �A13�

I9
m��,��� = −

1

L
�

0

�

dke−kLJm�k��Jm�k���

= −
1

L

1

	�����1/2Qm−1/2�s� , �A14�

using f�kL�=1− 1−e−kL

kL .

c. Diagonal matrix elements

The OC and C diagonal dipolar matrix elements of Eq.
�16a� read as

dii
Xmn =

� d2�mi
�mn���hdi

Xmn���

4	Nii
mn , �A15�

with X=OC,C and dii
mn=dii

OCmn+dii
Cmn with i=� ,z. The inte-

gration is carried out over the dot area and Nii
mn

=
d2�mi
�mn���mi

mn��� is the in-plane part of the normaliza-
tion constant �integral� of the mi component of the dynamic
magnetization. We have neglected the sin � dependence of
m�

�mn��� in the C region, because in Eq. �2� the two dynamic
magnetization components m� and mz of the OC region ap-
pear. By using hd�

OC0n and hd�
C0n for m=0, n modes �cf. Eq.

�10�� together with the corresponding hd�
OCmn and hd�

Cmn �cf.
Eqs. �14a� and �14b�� for �m��0, n modes, respectively, writ-
ten within the local dipolar approximation we get d��

mn�
−f���mn�Cmn. For m=0, n modes we get C0n=1 for each n,
while for �m��0 and n modes, we obtain

Cmn = ��
�

R

�d��J�m���mn�� − �mnY �m���mn���Q

� �
0

�

dkkJm� �k��Jm� �k�������
�

R

�d��J�m���mn��

− �mnY �m���mn���2� , �A16�

where Q=
�
a��d���J�m���mn���−�mnY �m���mn����sin �����

+
a
R��d���J�m���mn���−�mnY �m���mn����, with m=�1,�2,

. . . and n=0,1 , . . ..
The calculation of the integral over k yields to the result

given in the right member of Eq. �A5�. Using Eq. �13�, which
expresses hdz

OCmn and hdz
Cmn written within the local approxi-

mation yields

dzz
OCmn � − ��1 − ���1 − f���mn���

and

dzz
Cmn � − b��1 − f���mn�� ,

respectively.

2. Nonuniform magnetization along the thickness

a. Axially symmetric modes

We calculate after inserting f�kL ,��0n� �cf. Eq. �15� for
m=0� in place of f�kL�,
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Ī��
0 ��,��,��0n� = �

0

�

dkkf�kL,��0n�J1�k��J1�k���

= Ī1
0��,���L + ���0n�coth���0n�Ī2

0��,���

+ 1/sinh���0n�Ī3
0��,����� ,

where

Ī j
0��,��� =

1

L
�

0

�

dkSj�k,�0n�J1�k��J1�k��� , �A17�

with j=1,2 ,3, S1�k ,�0n�= k3

k2−�0n
2 , S2�k ,�0n�=− k2

k2−�0n
2 , and

S3�k ,�0n�=e−kL k2

k2−�0n
2 . Straightforwardly, for �0n→0

Ī��
0 �� ,�� ,��0n� reduces to I��

0 �� ,���, the corresponding
quantity of the uniform case.

Instead,

Īzz
0 ��,��,��0n� =

1

��
���� − ��

− �
0

�

dkkf�kL,��0n�J0�k��J0�k���

= ��0n�coth���0n�Ī4
0��,���

+ 1/sinh���0n�Ī5
0��,���� ,

with

Īl
0��,��� =

1

L
�

0

�

dkSl�k,�0n�J0�k��J0�k��� , �A18�

where l=4,5, S4�k ,�0n�=−S2�k ,�0n�, and S5�k ,�0n�
=−S3�k ,�0n�. Straightforwardly, for �0n→0 Īzz

0 �� ,�� ,��0n�
reduces to Izz

0 �� ,��� of the uniform case.

b. Nonaxially symmetric modes

The corresponding Ī��
m component for �m��0 and n modes

obtained by use of Eq. �6� is Ĩ̄��
m �� ,�� ,��mn ,��

=eim�Ī��
m �� ,�� ,��mn�, with

Ī��
m ��,��,��mn� = �

0

�

dkkf�kL,��mn�Jm� �k��Jm� �k���

= Ī6
m��,���L + ���mn�coth���mn�Ī7

m��,���

+ 1/sinh���mn�Ī8
m��,�����

after inserting f�kL ,��mn� �cf. Eq. �15� for m�0� in place of
f�kL� and

Īp
m��,��� =

1

L
�

0

�

dkSp�k,�mn�Jm� �k��Jm� �k��� , �A19�

with p=6,7 ,8, S6�k ,�mn�= k3

k2−�mn
2 , S7�k ,�mn�=− k2

k2−�mn
2 , and

S8�k ,�mn�=e−kL k2

k2−�mn
2 . Again, Ĩ̄��

m �� ,�� ,�mn ,�� reduces to

Ī��
m �� ,�� ,�� of the uniform case for �mn→0.

Instead, using Eq. �6� the Ĩ̄zz
m�� ,�� ,��mn ,�� quantity for

m�0 and n reads Ĩ̄zz
m�� ,�� ,��mn ,��=eim�Īzz

m�� ,�� ,��mn�,
with

Īzz
m��,��,��mn� = 1

��
���� − ��

− �
0

�

dkkf�kL,��mn�Jm�k��Jm�k���

= ��mn�coth���mn�Ī9
m��,���

+ 1/sinh���mn�Ī10
m ��,����

and

Īq
m��,��� =

1

L
�

0

�

dkSq�k,�mn�Jm�k��Jm�k��� , �A20�

with q=9,10, S9�k ,�mn�=−S7�k ,�mn�, and S10�k ,�mn�
=−S8�k ,�mn�. Ĩ̄zz

m�� ,�� ,��mn ,�� reduces to Īzz
m�� ,�� ,�� of

the uniform case for �mn→0. A numerical evaluation of the
integrals in Eqs. �A17� and �A18� �Eqs. �A19� and �A20�� for
each �0n ��mn� has been carried out very carefully excluding
the singularities at k=�0n �k=�mn� for each n.

c. Diagonal matrix elements

The OC and C dipolar diagonal matrix elements are writ-
ten as

d̄ii
Xmn =

� d3rmi
�mn�r�hdi

Xmn�r�

4	N̄ii
mn

, �A21�

with X=OC,C. Here N̄ii
mn=
d3rmi

�mn�r�mi
mn�r�

=
dzmi
�mn�z�mi

mn�z��
d2�m�
�mn���m�

mn��� is the normaliza-
tion constant �integral� of the mi component of the dynamic
magnetization with i=� ,z. We get for the whole set of modes
d̄���−����mn�Cmn �or d̄���−� f���mn�Cmn�. Such as for the
case of uniform magnetization along z the calculated coeffi-
cients Cmn are those given in Eq. �A16� for �m� and n modes;
in particular, Cmn=1 for m=0 and n modes. By using the
expressions of the z components of the dipolar magnetic
fields derived within the local dipolar approximation for m
=0 and n modes and for �m��0 and n modes, we get

d̄zz
OCmn�−��1−���1−����mn��� �or d̄zz

OCmn�−��1−���1
−� f���mn���� and d̄zz

Cmn�−b��1−����mn�� �or d̄zz
Cmn

�−b��1−� f���mn���, respectively.
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